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ABSTRACT   

In this paper, the qualitative characteristics of dispersion relation for a helically corrugated waveguide are 

discussed with numerical approach which is based on solution of dispersion equation derived from theory.  

It imposes certain restrictions allowed for the values of the axial and azimuthal symmetry of the structure.  

The last section deals with results and discussion for different corrugation depth and azimuthal periodicity 

of the structure. 

 

INTRODUCTION 

Metal hollow waveguides with various types of 

periodic corrugation are widely used in high-power 

microwave electronics. One such structure that has 

recently attracted considerable interest consists of a 

helical corrugation in the wall of a circular cylindrical 

waveguide, which involves both axial and azimuthal 

periodicity. This provides asymmetry of the wave 

dispersion for circularly polarized modes, resulting in 

additional mode selection. These properties make 

waveguides with a helical corrugation attractive for a 

large number of applications.[7] 

In particular, they have been used as slow-

wave interaction structures in relativistic Cherenkov 

devices in Bragg and as mode converters etc. 

Helically corrugated waveguides have recently been 

successfully used as interaction regions in gyrotron 

traveling-wave tubes (GTWTs), and gyrotron 

backward-wave oscillators (GBWOs) and as a 

dispersive medium for passive microwave pulse 

compression [1-4]. 

Due to this wide applicability, it is relevant 

and important to investigate the electrodynamic 

properties of such waveguides by analytical 

approach and confirm the validity of the results by 

comparison with simulation and experimental 

studies. (5). 

Helical corrugation of the inner surface of 

an oversized circular waveguide provides very 

flexible dispersion characteristic of an eigenwave. 

Under certain corrugation parameters, the 

eigenwave can possess a sufficiently high and almost 

constant group velocity over a wide frequency band 

in the region of close-to-zero axial wavenumber [6]. 

In previous paper [7], we derived the 

dispersion relation for a helically corrugated 

waveguide and discussed the result of dispersion for 

periodicity in azimuthal direction φ1. where 

1

0

2




=q     q0 =0, and 1.  

Here the well known Floquet’s theorem is 

used which deals with the eigenfunctions of wave 

equation in an infinite periodic structure. It imposes 

certain restrictions allowed by the axial and 

azimuthal symmetry of the structure.[7] 

  The principles of synthesizing the necessary 

dispersion and its qualitative characteristics are 

discussed with numerical approach which is based 



International Journal of Scientific & Innovative Research Studies   ISSN : 2347-7660 (Print)  |  ISSN : 2454-1818 (Online) 

 

Vol (9), No.4 April,  2021                                                                                                                                                                 IJSIRS                                                                                                                                                 23 

 

on solution of a dispersion equation derived from 

the theory [7]. In this paper necessary qualitative 

characteristic are discussed for q0 =3 with numerical 

approach and compared to other values of q0 .The 

last section deals with results and discussion.  

FIELDS IN HELICAL WAVEGUIDE 

Let us consider a waveguide with the helical profile 

of its inner surface represented in a cylindrical 

coordinate system   (r, ө, z) as follows: 

Wall radius   ( ) ( ) 000 cos, qzkhRzR ++=  

→(1)  

Where 

0

0

2

z
k


=  and   

1

0

2




=q .  Periodicity in 

axial direction is z0 while periodicity in azimuthal 

direction is φ1.   

Here R0 is the mean radius of the waveguide, h is the 

amplitude of the corrugation, and z0 is the 

corrugation period.  

 

 

 

  

Figure.1 Schematic view of a waveguide with a three-fold right-handed (q0=3) helical corrugation. 

Due to Floquet periodicity both in azimuthal as well as axial direction, we can write the azimuthal as well as axial 

fields as 
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where 

  

Here N is an integer tending to infinity. 
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BOUNDARY CONDITIONS 

The tangential component of electric field must vanish at the metallic surface. 

This result in  

( ) 0sin
)cos(),(

000

0000

=+−
++= 


qzkhRzR

rz EqzkhkE  → (4)                                  

And 

  ( ) ( ) ( ) ( ) 0sincos
000 cos,00000 =+−++ ++=   qzkhRzRrEqzkqEqzkE  →  (5)                   

 here   

0R

h
=   (6) 

Substituting electric field components  EEr ,  from (6) in the first and second boundary conditions we get 
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→(7b)  

We drop the common factor – (ωt –kzz–lθ) from  , 

and substituting     

Also dropping the argument rn  from Bessel functions, we get 

→ (8)  

( )

( )  ( ) ( ) 

( )
( )
( )

0

sin
2

2

cos1

11

11
'0

1111

'

2
=







































+−

−

+−++
+

−

+−

+−

+−+−

−= −=

+

 

nplln

npllnzn

npllnnpllnzn

Nn

N

Np n

pnui

DJJk

AJJik
u

q

DJJikAJJk
u

e

pp

pp

pppp












   → (9) 

                                                                                         

DISPERSION RELATION 

Rewriting equations (8) and (9) and multiplying  
( )omuie +

 , and we get 
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Integrate above equations over u in (limit –π to π ) 

We evaluate the integral 
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Similarly integrating equation (11) gives 
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  → (13) 

Equations (12) and (13), will give the dispersion relation 

We denote  

   
( ) 
( )  ,112

112

+++++=

+++++=

pNnNNj

oNmNNi
 

Then (12) and (13) can be written as 
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For non trivial solution the determinant of the matrix must be zero. 

The required cold dispersion relation for helically corrugated waveguide can be given by the following matrix.  

( ) 0det, =







=

ijij

ijij

WV

UT
kD      → (17)  

in order to have non-zero jG and jK  in (17).  

RESULTS AND DISCUSSION 

In this section we examine the operation of helically 

corrugated waveguide on the basis of numerical 

results obtained on the basis of above analytical 

results. Dispersion curves are obtained for the 

following set of parameters: 

Mean radius of the waveguide  cmR 47.10 =    

Corrugation period   89.20 =z , l=1 

30 =q   corrugation depth h= 0.19cm, 0.175cm, 

0.14cm, 0.1cm, 0.01cm. 

20 =q , corrugation depth h= 0.19cm, 0.175cm, 

0.14cm, 0.1cm, 0.01cm. 
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In the subsequent computation, we limit ourselves 

to the case of (l=0 and l=1) for simplicity. To clarify 

the nature of (16), we consider the case without 

corrugation. Putting 0=h and 00 =q ,it results in 

the conventional dispersion relation. When the 

amplitude of corrugation decrease, the dispersion 

relation in the helically corrugated waveguide 

become close to those of the smooth waveguide as 

shown in Figure 2.  

Dispersion curves for l=1 is numerically obtained 

from (17) for the given set of corrugation depth. The 

rank of determinant in (17) is infinite, and we have 

to approximate the determinant with an adequate 

finite rank in numerical analysis. In our numerical 

calculation, we consider N=2   the determinant of 

the order 5050 is obtained.  

 
 

Figure .2 Dispersion characteristics of a cylindrical smooth waveguide of radius 1.47cm and light line.  

Figure 2 shows TM and TE modes in cylindrical 

smooth waveguide with radius 1.47cm. The figure is 

drawn so that modes can be identified in the 

subsequent figures. 

Figure 3 represent the dispersion relation of 

radius 1.47cm, corrugation period 2.89 and the 

lowest value of corrugation amplitude 0.01cm 

among all calculated results.TE11 and TE21 are shown. 

As the corrugation amplitude is very small the 

characteristics are similar to the cylindrical smooth 

waveguide. 

 
              (a)                                                                       (b) 
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Figure.3(a) Dispersion characteristics for the helically corrugated waveguide of corrugation amplitude 0.01cm. 

Figure 4 shows dispersion relation for corrugation amplitude of 0.1cm. Coupling of TE11 and TE21 are observed. 

 
                         (a)                                                                                                                        (b) 

Fig. 4(a) Dispersion characteristics for the helically corrugated waveguide of corrugation amplitude 0.1cm. 

(a)                                                                                                (b) 

Figure. 5(a) Dispersion characteristics for the helically corrugated waveguide of corrugation amplitude 0.175cm. 

Coupling of TE11 mode and TE21 modes is evident (b). 
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Figure 5 and 6 present dispersion curve for corrugation amplitude 0.175cm and 0.19cm respectively where the 

Coupling of TE11 and TE21 are evident. 

 

 
(a)                                                                                                (b) 

Figure.6 (a) Dispersion characteristics for the helically corrugated waveguide of corrugation amplitude    0.19cm. 

The coupling of TE11 mode and TE21 modes is evident.  

Figure 5 and 6 present dispersion curve for corrugation amplitude 0.175cm and 0.19cm  respectively where the 

Coupling of TE11 and TE21 are evident 

 

 

Figure.7 (a) Comparision of numerical results of dispersion curves for different value of corrugation amplitude.  

Here curves A, B, C, D, E, F and G are of corrugation amplitudes 0.01, 0.05,0.1,0.125,0.15,0.175 and 0.20cm 

respectively. 
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In figure. 7 shows the variation of frequency for 

various value of corrugation amplitude. Larger 

values of corrugation results in stronger coupling of 

TE11 and TE21 modes. 

A helical wall perturbation can provide 

selective coupling between a higher and lower 

circularly polarized mode. With appropriate choice 

of parameters, the operating eigenwave of helically 

corrugated waveguide will be interpreted as the 

modified or strongly perturbed mode TE11. The 

results obtained were compared with experimental 

and simulation which were found in good agreement 

[1]. 
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