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ABSTRACT   
 
The condition under which the simple fluid may be interpreted as a two fluid mixture are 

discussed. The influence of the field near the singularity and at later stages of the expansion is 

presented. A subclass of these models approaches homogeneity and isotropy for large 

cosmological times. We have presented an algorithm for obtaining exact solutions of perfect 

magnetofluid in Ruban's background. We have obtained a new class of expanding inhomogeneous 

solutions generalising the dust model found by Ruban.A method for obtaining exact solutions for 

the Einstein-Maxwell equations in Ruban's background is presented, with perfect magnetofluid as 

the source of energy momentum tensor. In the most general case the cosmological constant is 

nonzero and the matter content is perfect magnetofluid only with magnetic field. By considering 

the case of simple fluid, a class of expanding inhomogeneous solutions generalising the dust 

model obtained by Ruban and the Doroshkevich magnetic universe is obtained.  

 

 

INTRODUCTION 

Since the discovery of the Szekeres (1975) dust filled 

universe increasing attention has been paid to 

inhomogeneous cosmological models such as 

Szafron (1977), Pollack and Cadderni (1980), Goode 

and Wainwright (1982), Lima (1986) and Raj and 

Singh (1987). We have presented an algorithm for 

obtaining exact solutions of the Einstein-Maxwell 

equations in Ruban's background. 

In astrophysical and cosmological problems, the 

assumption of a primeval magnetic field has many 

interesting consequences. In fact, such a field could 

play an crucial role on the structure of formation 

process, in the origin of the galactic and intergalactic 

magnetic field, as well as to alter significantly the 

underlying geometric structure of the universe, at 

least in the early stages of the cosmic evolution as 

presented by Hoyle (1958), Doroshkevich (1965), 

Zeldovich (1965, 1970), Fujimoto et al (1971) and 

Reinhardt et al (1970). Dynamical effects produced 

by magnetic field were discussed by several authors, 

firstly in the framework of homogeneous axially 

symmetric models by Stewart and Ellis (1972), Vajk 

and Eltgroth (1970), Ruban (1982), Spokoiny (1982), 

Szekeres (1975), Bonnor et al (1976). 

THE METRIC AND EINSTEIN FIELD 

EQUATIONS WITH COSMOLOGICAL 

CONSTANT  

Let us consider Ruban (1969) line element 
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      2 2 2 2 2 2 2,dt Q x t dx R t dy H dz        (1) 

with 

   

sin      if 1
sin

          if 0

sinh    if 1

y k
k y

H y y k
k

y k




  
  

     (2) 

 where k be the curvature parameter of homogeneous 2-spaces t and x constant. The functions Q and R 

are free and will be obtained by the Einstein field equation with cosmological constant   in units 

8 1.G C    

   
1

,
2

m fR g R g T T            (3) 

where mT 
 be the energy momentum tensor of material medium and fT 

 as the energy momentum tensor of 

electromagnetic field. Hence, for perfect magnetofluid 

     ,fT p u u pg    
         (4) 

and 

    
21

2
,f u u g h h h          

      (5) 

where the vector h  being a spacelike vector such that 

   
2

0,h h h

          (6) 

with   as the magnetic permeability as a given constant. 

 In the case of perfect magnetohydrodynamics, the electric current J is not known and the Maxwell 

equations are 

    
;

0u h u h   


       (7) 

We expand these equations 

  ; ; ; ; 0,h u u h h u u h       

            (8) 

with  0h u     and 1.u u

   
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 According to equations (4) and (5), it is possible to write the energy momentum tensor 

       2 21
,

2
T p h u u p h g h h        

  
      

 
  (9) 

where 

    
21
,

2
P p h         (10) 

    
21
.

2
W h          (11) 

Hence, 

    .T P W u u Pg h h               (12) 

 Perfect magnetohydrodynamics is the study of the properties of a perfect fluid with an infinite 

conductivity .   The electric current ,J  and thus the product  e  being essentially finite, we have in this 

case 0.e   The electromagnetic field is reduced to a magnetic field h  with respect to the velocity of the 

considered fluid. 

 The Einstein field equations with cosmological constant   i.e. 

   
1

,
2

R R g T  

 
   
 

      (13) 

 reduces to 

   
2 2 2

00 2 ,QR T QR RQR kQ QR         (14) 

   
2 2 2 2

11 ,Q R T R R R k R             (15) 

   
1

22 ,QR T QR QR QR QR            (16) 

      
1 2

33 ,QR H T QR QR QR QR             (17) 

where an overdot means time derivative. 

 Let us consider comoving frame      

     0 .u        (18) 

In view of eq. (12), one obtains 
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 22

00 11

2 2 2

22 33

,

,

T W T Q P h

T R P T PR H

    

  

       (19) 

Now for 0,h u    we obtain 

   
0 0h   

 Let us assume 

   
1 2 3 00,     0.h h h h           (20) 

Eq. (7) is identically satisfied, and we get 

    
2 21 2h h Q        (21) 

and 

    
2 21 2h Q h         (22) 

 Hence, Einstein field equations assumes the form 

   

2

2

2
,

RQ R k
W

RQ R


         (23) 

  

2
2

2 2

2
,

R R k
P h

R R R



           (24) 

  

2
2

.
R k

h QR R Q QR QR
R


 

    
 

      (25) 

 

The system of eqs. (23) - (25) is indeterminate 

because there are three differential equations and 

four unknown quantities, namely W, P, R and Q in 

our description. Moreover, the net pressure P is a 

function of t alone whereas the net energy density 

W is a function of t and x. Therefore, the usual 

equation of state maynot be used without loss of 

generality. Hence, this is the same problem 

appearing for the first time in Szekeres' type models. 

Szafron (1977) suggested an algorithm for obtaining 

exact solutions, as follows: 

(i) Specify the net pressure 

 , , ,P P R R R   and solve it for 

  ,R R t  

(ii) Obtain  ,Q Q R x  from eq. (25), 

(iii) From eq. (23), evaluate the net energy 

density W by substituting the expressions of Q(R,x) 

and R(t). 
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We remarks that if 0,P     the solutions are 

simple inhomogeneous generalisations of 

Doroshkevich (1965) universe. If 0  , Ruban's 

models are recovered and if   2W R C R  or 

    2 23 1W R R k R    where C and 

  are constants then the models stand for two 

subclasses of Szekeres type solutions. 

NEW CLASS OF SOLUTIONS 

It is to be noted that if 0   or magnetic field 

vanishes, then from eq. (24) we recover FLRW 

models. Now, let us assume the choice of pressure 

     2 23 1 / ,P R k R          (26) 

where the constant   is identified as adiabatic index of the asymptotic in time with equation of state 

 1 .P     

 Let us put 0,   one obtains 

     
22 21 1 1

3 2 3 2 0
2 2 2

RR R k h R             (27) 

The first integral of which reads 

  
 

 
3 2

22 0 1 4 if 
34 3

R
R k h R

R



 




 
    

 
     (28) 

and 

  

22

2 20 0
0

0

4 if ,
3

h RR R
R k R n

R R R
 
    

       
    

     (29) 

where R0 be a  -independent constant. 

 

If 0   in eq. (28), then it is first integral for any 

  and eq. (27) reduces to the FLRW differential 

equation. In this case, the solution of eq. (27) is valid 

for   and k as given by Assad and Lima (1988), in 

terms of hypergeometric functions. However, if   

and k are both different from zero the method given 

there maynot be applied. Hence, for the sake of 

simplicity, we consider the quasi-Euclidean models k 

= 0 and 
4
3
.   In this case in view of Assad and 

Lima (1988), it is easy to show that the solution of 

eq. (27) or equivalently (28) is given by  
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13 2
2 3 42 2

0
0 1

0 0

2
1

4 3 4 3

h RR R R
t t F

R R

 


 

    
      

      

 

    

1
22 2

0
2

2
1 .

4 3 4 3

h RR
F



 

 
  

   
      (30) 

 In the limit 0   and in view of identity given by Abramowitz and Stegun (1965) 

           ; ; ;1 ,
c c a b c a c b

F a b c
   

           (31) 

gives 

    
2

3

0 0

3
1

2
R R t t 


  


      (32) 

which is the same FLRW models as given by Assad and Lima (1988), where    0 2 1 0,  t t R F F R   and 

 1F h  is hypergeometric function 

  

3 42 2

1

0

3 2 3
;1; ;1 .

3 4 2 4 3

h R R
F F

R




 

  
    

    

     (33) 

The solution of Q is given by Lima and Nobre (1990) 

   
 3 4 / 2

3 0 0 4Q RF R R R F


 


        (34) 

where   and   are arbitrary functions of x and 3 4,F F  are two new hypergeometric functions 

 
     

3 42 2

3

0

1 1 3 2
, , ,

2 3 4 2 3 4 2 3 4 4 3

h RD D R
F F

R




   

    
   

      

   (35) 

 
     

3 42 2

0

3 5 3 5 9 14
, , ,

2 3 4 2 3 4 2 3 4 4 3
A

h RD D R
F F

R


  

   

      
   

      

  (36) 

 Now for   = 0, the function Q reduces to 

    
 3 4 / 2

0 0Q R R R R


 


          (37) 
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and we may evaluate 

   

2

2

2
1 ,

R RQ
W

R Q

 
  

 
        (38) 

where .Q Q R     

 If 0   and the arbitrary functions are taken constants, the case 1,   one obtains the dust filled 

magnetofluid model. 

 The kinematic quantities are 

  

2

2 1 1

2 3

RQ QR

RQ



  
 

   
 

     (39) 

and 

   
3

3
R

R
          (40) 

 Hence, for Q R  where   is arbitrary function of x the model gives FLRW ones. 

 

CONCLUDING REMARKS 

The condition under which the simple fluid may be 

interpreted as a two fluid mixture are discussed. The 

influence of the field near the singularity and at later 

stages of the expansion is presented. A subclass of 

these models approaches homogeneity and isotropy 

for large cosmological times. We have presented an 

algorithm for obtaining exact solutions of perfect 

magnetofluid in Ruban's background.  

            We have presented an algorithm for obtaining 

exact solutions of perfect magnetofluid in Ruban's 

background. We have obtained a new class of 

expanding inhomogeneous solutions generalising 

the dust model found by Ruban. 
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