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ABSTRACT   
 
During the infall, interactions between the magnetic field and the plasma are so strong that 

typically 10% of the rest mass energy is transported to magnetic field. If a small amplitude 

perturbation is assumed to superpose on the stationary black hole magnetosphere in which the 

magnetic field dominates the accretion, the former is likely to supply a lot of perturbation energy 

to the latter. Then, one may expect highly variable accretion inside the inner edge of the disk, it is 

favourable compared with the observation. Using these equations one may analyse perturbation 

of MHD accretion.  

We present the basis equations for general relativistic magnetohydrodynamic (MHD) 

accretion onto a Kerr black hole. These equations may be use for the study of non-stationary and 

non-axsiymmetric perturbations of magnetohydrodynamic accretion onto a Kerr black hole. 

During the infall, interactions between the magnetic field and the plasma are so strong that 

typically 10% of the rest mass energy is transported to magnetic field. If a small amplitude 

perturbation is assumed to superpose on the stationary black hole magnetosphere in which the 

magnetic field dominates the accretion, the former is likely to supply a lot of perturbation energy 

to the latter. 
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INTRODUCTION 

Astrophysically it is very interesting to study of 

plasma accretion onto a black hole in the context of 

a galactic black hole candidate or an active galactic 

nucleus. Their output power is ultimately 

gravitational in origin the energy of their emission is 

supplied by accreting gas liberating its gravitational 

binding energy as shown by Rees (1984), Mitsuda et 

al (1984), Ubertini et al (1991), Motch, Ilovaisky and 

Chevalier (1985), Makino (1989), Rothschild et al 

(1983), Witta (1984), Covault et al (1992). 

 We have presented the basic equations for 

general relativistic magnetohydrodynamic flows in 

Kerr geometry. In a stationary black hole 

magnetosphere, the energy and the angular 
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momentum of infalling plasma are not conserved 

along a flow line as described by Hirotani et al 

(1992). Katkar et al (2009) again described it. We 

have also presented the critical conditions for 

general relativistic magnetohydrodynamic flows. 

These equations are very useful for the study of time 

variation of magnetohydro- dynamic accretion onto 

a black hole i.e. non-stationary and non-

axisymmetric perturbations of 

magnetohydrodynamic accretion onto a Kerr black 

hole. 

BASIC EQUATIONS 

Since the self-gravity of electromagnetic field and 

plasma around the black hole is very weak, the 

background geometry of the magnetospere is given 

by the Kerr metric 
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 .a J M          (5) 

M be the mass of black hole and 1.C G      

 Under magnetohbydrodynamic conditions the electric field reduces to zero, hence, one obtains 

 0,i k

ikF U U          (6) 

 where ikF  be the electreonagnetic field tensor satisfying the Maxwell equations 

  ,
0,

k l
F           (7) 

where 
iU  be the fluid four velocity. 

 The motion of the fluid in the cold limit reads 
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where  be the rest-mass of a proton and the semicolon denotes a covariant derivative. The proper number 

density n obeys the continuity equation 

 
;

0.i

i
nU           (9) 

 

These basic equations are used for the description of 

stationary and axisymmetric black hole 

magnetosphere. 

 Let us describe a stationary plasma 

accretion in a black hole magnetosphere. There are 

two light surfaces in a black hole magnetosphere. 

One as the outer light surface which is created by 

centrifugal force and other as the inner light surface 

which is formed by the gravity of the hole. In a 

region between the horizon and the inner light 

surface plasma must stream inwards, while in a 

region beyond the outer light surface it must stream 

outwards. The plasma source where both inflows 

and outflows start with low poloidal velocity will be 

located between two light surfaces as presented by 

Nitta et al (1991). The injection region Fr r  

successively, and at last reach the event horizon 

.Hr r  It is shown in fig.1. 

CRITICAL CONDITIONS 

Let us describe the critical conditions for general 

relativistic magnetohydrodynamic flows. There exist 

four integration constants conserved along each 

flow lines as shown by Bekenstein and Oran (1977) 

and Camenzind (1986a,b) from the analysis of 

stationary and axisymmetric magnetohydrodynamic 

equations. These conserved quantities are the 

angular velocity of a magnetic field line ,F

particle flux per magnetic flux tube  , total energy 

E, and the total angular momentum L. 
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where the toroidal magnetic field B  reads 

2

,w

rB F
g

 


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
         (14) 

where 
2

w  is given by 

 

2 2 2sin .w t ttg g g             (15) 

 

The poloidal flow line is similar with a poloidal magnetic field line and reads 

 

 ,r    constant.        (16) 

 

Fluid must pass through the critical points before they fall into the horizon. The poloidal wind equation as 

suggested by Camenzind (1986) reads 
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where the poloidal velocity U   and the Alfven Mach number 
2

AM  are defined as 
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and K, K  read 

2 2 ,F a F ttK g g g             (20) 
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Let us differentiate eq. (17) alone a poloidal flow line, we obtain the critical condition such that pU   may not 

diverge 
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where the prime  '  denotes the derivative   ,r r       and the poloidal magnetic field as 

 

     
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We define FMU  as the fast-magnetosonic velocity. Hirotani et al (1992) obtained the critical point as 
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where 



International Journal of Scientific & Innovative Research Studies  ISSN : 2347-7660 (Print)  |  ISSN : 2454-1818 (Online) 

 

6 | Vol (5), No.4, April, 2017                                                                                                                                                                 IJSIRS 

 

 

   
 

2

2

2 2

2 sin
1 ,

1 sin 1 sin

H H F

H F H

r
W a F

r M a a

 


  


    

   
 (26) 

   
 
 

 
2

2

2

1 sin sin
2

sin1 sin

H

H F

F

a P
F p M

a


  




 
  

  
  

2 4
1 H

H H

mrM
P PCot

r

 

    
  

      (27) 

 rP r       (fined line shape)     (28) 

2H Ha Mr     (Angular velocity of hole's rotation) (29) 

 

But the smallness of factor 
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ensures 
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It is located near the horizon in the magnetically dominated limit. 

 

CONCLUDING REMARKS 

We present the basis equations for general 

relativistic magnetohydrodynamic (MHD) accretion 

onto a Kerr black hole. These equations may be use 

for the study of non-stationary and non-

axsiymmetric perturbations of 

magnetohydrodynamic accretion onto a Kerr black 

hole. During the infall, interactions between the 

magnetic field and the plasma are so strong that 

typically 10% of the rest mass energy is transported 

to magnetic field. If a small amplitude perturbation 

is assumed to superpose on the stationary black hole 

magnetosphere in which the magnetic field 
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dominates the accretion, the former is likely to 

supply a lot of perturbation energy to the latter. 

During the infall, interactions between the magnetic 

field and the plasma are so strong that typically 10% 

of the rest mass energy is transported to magnetic 

field. If a small amplitude perturbation is assumed to 

superpose on the stationary black hole 

magnetosphere in which the magnetic field 

dominates the accretion, the former is likely to 

supply a lot of perturbation energy to the latter. 

Then, one may expect highly variable accretion 

inside the inner edge of the disk, it is favourable 

compared with the observation. Using these 

equations one may analyse perturbation of MHD 

accretion.  
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