STATIC SPHERICALLY SYMMETRIC BLACK HOLES IN f(R) GRAVITY

Amit Kumar Srivastava,
Department of Physics, D.A.V. College, Kanpur (U.P.), India

ABSTRACT

We present basic equations for $f(R)$ gravity and study static spherically symmetric black holes in $f(R)$ theory in D-dimensional spacetime. We recover de Sitter and anti de Sitter solutions (dS/AdS).

INTRODUCTION

The $f(R)$ gravity comes in picture due to Felice and Tsujikawa (2010), Nojiri and Odinatsov $(2007,2011)$ and Capozziello (2011) and other workers, as straightforward extension of general theory of relativity. In such theories the scalar curvature R in the Einstein-Hilbert action is replaced by $R+f(R)$. It is very simple alternative to general theory of relativity. Abbott et al $(2016,2017)$ opened a new phase in the history of physics. Very little is known about $f(R)$ gravity exact solutions, which deserve to be understood better. Spherically symmetric black
hole solutions were presented for a positive constant curvature scalar and a black hole solutions were also obtained in $f(R)$ gravities in the case of negative constant curvature scalar by different workers. Here we present some static spherically symmetric black hole solutions in $f(R)$ gravity in Ddimensional spacetimes.

GENERAL EQUATIONS FOR f(R) GRAVITY

Let us start by considering a Lagrangian of the form

$$
\begin{equation*}
S_{f}=\frac{1}{2 k^{2}} \int d^{4} x \sqrt{-g} f(R), \tag{1}
\end{equation*}
$$

where $k^{2}=8 \pi$. Varrying this action with respect to metric $g_{\alpha \beta}$ gives the equation of motion

$$
\begin{equation*}
R_{\alpha \beta} f^{\prime}(R)-\frac{1}{2} f(R) g_{\alpha \beta}+\left(g_{\alpha \beta} \mathrm{W}-\nabla_{\alpha} \nabla_{\beta}\right) f^{\prime}(R)=0 . \tag{2}
\end{equation*}
$$

It is well known that eqs. (2) has a constant curvature solution $R=\bar{R}$, so we get

$$
\begin{equation*}
\bar{R}_{\alpha \beta} f^{\prime}(R)-\frac{1}{2} g_{\alpha \beta} f(\bar{R})=0 . \tag{3}
\end{equation*}
$$

Its trace reads

$$
\begin{equation*}
\bar{R} f^{\prime}(\bar{R})-2 f(\bar{R})=0 . \tag{4}
\end{equation*}
$$

Let us express the Lagrangian as

$$
\begin{equation*}
f(R)=R+\varphi(R), \tag{5}
\end{equation*}
$$

where $\varphi(R)$ represents terms in the gravity action beyond general theory of gravity. Therefore, we rename $\varphi(R)$ as $f(R)$. Thus, Lagrangian assumes the form $R+f(R)$.

GRAVITY IN HIGHER DIMENSIONAL
 Let us consider the modified Einstein-Hilbert, D-

 SPACETIMEdimensional action

$$
\begin{equation*}
S=\frac{1}{16 \pi} \int d^{D} x \sqrt{-g}(R+f(R)) \tag{6}
\end{equation*}
$$

that the Einstein-Hilbert action in D-dimension for
where g be the determinant of the metric $g_{\alpha \beta}$ Λ_{f} as cosmological constant reads $(\alpha, \beta=0,1 \ldots \ldots . D-1), \mathrm{R}$ be the scalar curvature and $f(R)$ as the real function. Here, it is to noted

$$
\begin{equation*}
f(R)=-(D-2) \Lambda_{f} \tag{7}
\end{equation*}
$$

In view of eq. (6), the equation of motion is given by

$$
\begin{align*}
& R_{\alpha \beta}\left(1+f^{\prime}(R)\right)-\frac{1}{2}(R+f(R)) g_{\alpha \beta} \\
& +\left(g_{\alpha \beta} \nabla^{2}-\nabla_{\alpha} \nabla_{\beta}\right) f^{\prime}(R)=2 T_{\alpha \beta} \tag{8}
\end{align*}
$$

where $R_{\alpha \beta}$ as usual Ricci tensor, the prime in $f^{\prime}(R)$ gives differentiation with respect to R, and $\nabla^{2}=\nabla_{\alpha} \nabla^{\alpha}$ alongwith ∇ as the usual covariant
derivative. Let us introduce $R=R_{0}$ as constant scalar curvature.

The trace of eq. (8) gives

$$
\begin{equation*}
2\left(1+f^{\prime}\left(R_{0}\right)\right) R_{0}-D\left(R_{0}+f\left(R_{0}\right)\right)=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& T=T_{\alpha}^{\alpha}=0, \tag{10}\\
& g_{\alpha}^{\alpha}=\delta_{\alpha}^{\alpha}=D . \tag{11}
\end{align*}
$$

Eq. (9) gives the negative constant scalar curvature as

$$
\begin{align*}
& R_{0}=\frac{D f\left(R_{0}\right)}{2\left(1+f^{\prime}\left(R_{0}\right)\right)-D}=D \Lambda_{f}, \tag{12}\\
& \Lambda_{f}=\frac{R_{0}}{D} \tag{13}
\end{align*}
$$

where Λ_{f} as an effective cosmological constant. Therefore, for any $R=R_{0}$ such that

$$
\begin{equation*}
1+f^{\prime}\left(R_{0}\right) \neq 0 \tag{14}
\end{equation*}
$$

must obeys

$$
\begin{equation*}
R_{\alpha \beta}=\Lambda_{f} g_{\alpha \beta}+\frac{2}{1+f^{\prime}\left(R_{0}\right)} T_{\alpha \beta} . \tag{15}
\end{equation*}
$$

Again for conformal matter or $T=T_{\alpha}^{\alpha}=0$ with $R_{0}=D \Lambda_{f}$ and $g_{\alpha \beta}$ be the solution of $f(R)$ $\Lambda_{f} \neq 0$, one has again constant $R=R_{0}$ with

$$
\begin{equation*}
f\left(D \Lambda_{D}\right)=\Lambda_{D}\left(2-D+2 f^{\prime} D \Lambda_{D}\right) \tag{16}
\end{equation*}
$$

For this case the solution is de Sitter (dS) or anti deSitter (AdS) in accordance with sign of R_{0} as in general relativity with cosmological constant.

REFERENCES

* Abbott, B.P. et al (2017), Phys. Rev. Lett. 118, 221101.
* Abbott, B.P. et al (2016), Phys. Rev. Lett. 116, 241103.
* Abbott, B.P. et al (2016) Phys. Rev. x6, 041015.
* Abbott, B.P. et al (2016) Phys. Rev. Lett 116, 061102.
\& de Felice, A. and Tsujikawa, S. (2010), Living, Rev. Relativity 13, 3.
* Nojiri, S. and Odintsov, S.D. (2007), Int. J. Geom. Methods Mod. Phys. 4, 115.
* Nojiri, S. and Odintsov, S.D. (2011), Phys. Rep. 505, 59.
* Capozziello, S. and Laurentis, M. De (2011), Phys. Rep. 509, 167.

